Monte Carlo calculation of two-dimensional electron dynamics in GaN–AlGaN heterostructures (2024)

Skip Nav Destination

Article navigation

Volume 91, Issue 6

15 March 2002

  • Previous Article
  • Next Article

Research Article| March 15 2002

Tsung-Hsing Yu;

Tsung-Hsing Yu

School of Electrical and Computer Engineering, Georgia Tech, Atlanta, Georgia 30332-0250

Search for other works by this author on:

This Site

Kevin F. Brennan

Kevin F. Brennan

School of Electrical and Computer Engineering, Georgia Tech, Atlanta, Georgia 30332-0250

Search for other works by this author on:

This Site

J. Appl. Phys. 91, 3730–3736 (2002)

Article history

Received:

November 15 2001

Accepted:

December 12 2001

  • Views Icon Views
    • Article contents
    • Figures & tables
    • Video
    • Audio
    • Supplementary Data
    • Peer Review
  • Tools Icon Tools
  • Search Site

Citation

Tsung-Hsing Yu, Kevin F. Brennan; Monte Carlo calculation of two-dimensional electron dynamics in GaN–AlGaN heterostructures. J. Appl. Phys. 15 March 2002; 91 (6): 3730–3736. https://doi.org/10.1063/1.1448889

Download citation file:

  • Ris (Zotero)
  • Reference Manager
  • EasyBib
  • Bookends
  • Mendeley
  • Papers
  • EndNote
  • RefWorks
  • BibTex
toolbar search

Search Dropdown Menu

Advanced Search |Citation Search

We present detailed Monte Carlo based calculations of the electron dynamics in GaN–AlGaN heterostructures in the presence of strain polarization fields. The model consists of a fully numerical self-consistent solution of the Schrödinger–Poisson equation with a Monte Carlo transport model. The two-dimensional sub-band energies, wave functions and carrier scattering mechanisms are computed numerically and included within a Monte Carlo simulation. The electron energy, steady-state and transient drift velocity and band occupancy are calculated as a function of electric field for different AlGaN–GaN heterostructure compositions. The effect of piezoelectrically induced strain fields on the transport dynamics is examined. A field dependent mobility model is also developed from the Monte Carlo results.

REFERENCES

1.

S. N.

Mohammad

,

A. A.

Salvador

, and

H.

Morkoc

,

Proc. of the IEEE

83

,

1306

(

1995

).

2.

R. J. Trew, in Semiconductors and Semimetals, Vol. 52, edited by R. K. Willardson and A. C. Beer (Academic, New York, 1998), p. 237

3.

E. R.

Brown

,

Solid-State Electron.

42

,

2119

(

1998

).

4.

M. S.

Shur

,

Solid-State Electron.

42

,

2131

(

1998

).

5.

D. L.

Smith

,

Solid State Commun.

57

,

919

(

1986

).

6.

O.

Ambacher

,

B.

Foutz

,

J.

Smart

,

J. R.

Shealy

,

N. G.

Weimann

,

K.

Chu

,

M.

Murphy

,

A. J.

Sierakowski

,

W. J.

Schaff

,

L. F.

Eastman

,

R.

Dimitrov

,

A.

Mitchell

, and

M.

Stutzmann

,

J. Appl. Phys.

87

,

334

(

2000

).

7.

Q.

Chen

,

J. W.

Yang

,

R.

Gaska

,

M. A.

Khan

,

M. S.

Shur

,

G. J.

Sullivan

,

A. L.

Sailor

,

J. A.

Higgings

,

A. T.

Ping

, and

I.

Adesida

,

IEEE Electron Device Lett.

19

,

44

(

1998

).

8.

Y-F.

Wu

,

B. P.

Keller

,

P.

Fini

,

S.

Keller

,

T. J.

Jenkins

,

L. T.

Kehias

,

S. P.

Denbaars

, and

U. K.

Mishra

,

IEEE Electron Device Lett.

19

,

50

(

1998

).

9.

Y-F.

Wu

,

B. P.

Keller

,

S.

Keller

,

N. X.

Nguyen

,

M.

Le

,

C.

Nguyen

,

T. J.

Jenkins

,

L. T.

Kehias

,

S. P.

Denbaars

, and

U. K.

Mishra

,

IEEE Electron Device Lett.

18

,

438

(

1997

).

10.

M. J.

Murphy

,

K.

Chu

,

H.

Wu

,

W.

Yeo

,

W. J.

Schaff

,

O.

Ambacher

,

L. F.

Eastman

,

T. J.

Eustis

,

J.

Silcox

,

R.

Dimitrov

, and

M.

Stutzmann

,

Appl. Phys. Lett.

75

,

3653

(

1999

).

11.

K. F.

Brennan

,

E.

Bellotti

,

M.

Farahmand

,

J.

Haralson

, II
,

P. P.

Ruden

,

J. D.

Albrecht

, and

A.

Sutandi

,

Solid-State Electron.

44

,

195

(

2000

).

12.

K. F.

Brennan

,

E.

Bellotti

,

M.

Farahmand

,

H-E.

Nilsson

,

P. P.

Ruden

,

Y.

Zhang

,

IEEE Trans. Electron Devices

47

,

1882

(

2000

).

13.

K. F. Brennan, J. Kolnik, I. H. Oguzman, E. Bellotti, M. Farahmand, P. P. Ruden, R. Wang and J. D. Albrecht, in GaN and Related Materials, Vol. 7, edited by S. J. Pearton (Gordon and Breach, Amsterdam, 2000), p. 305.

14.

E. Bellotti, M. Farahmand, M. Goano, E. Ghillino, C. Garetto, G. Ghione, H.-E. Nilsson, K. F. Brennan and P. P. Ruden, in Topics in High Field Transport in Semiconductors, edited by K. F. Brennan and P. P. Ruden (World Scientific, Singapore, 2001), p. 163.

15.

I. H.

Oguzman

,

E.

Bellotti

,

K. F.

Brennan

,

J.

Kolnik

,

R.

Wang

, and

P. P.

Ruden

,

J. Appl. Phys.

81

,

7827

(

1997

).

16.

E.

Bellotti

,

B. K.

Doshi

,

K. F.

Brennan

,

J. D.

Albrecht

, and

P. P.

Ruden

,

J. Appl. Phys.

85

,

916

(

1999

).

17.

M.

Farahmand

,

C.

Garetto

,

E.

Bellotti

,

K. F.

Brennan

,

M.

Goano

,

E.

Ghillino

,

G.

Ghione

,

J. D.

Albrecht

, and

P. P.

Ruden

,

IEEE Trans. Electron Devices

48

,

535

(

2001

).

18.

M.

Shur

,

B.

Gelmont

, and

M. A.

Khan

,

J. Electron. Mater.

25

,

777

(

1996

).

19.

L.

Hsu

and

W.

Walukiewicz

,

Phys. Rev. B

56

,

1520

(

1997

).

20.

Y.

Zhang

and

J.

Singh

,

J. Appl. Phys.

85

,

587

(

1999

).

21.

T-H.

Yu

and

K. F.

Brennan

,

J. Appl. Phys.

89

,

3827

(

2001

).

22.

T.

Li

,

R. P.

Joshi

, and

C.

Fazi

,

J. Appl. Phys.

88

,

829

(

2000

).

23.

K.

Yokoyama

and

K.

Hess

,

Phys. Rev. B

33

,

5595

(

1986

).

24.

K. Tomizawa, Numerical Simulation of Submicron Semiconductor Devices, (Artech House, Boston, 1993).

25.

K. F.

Brennan

and

D. H.

Park

,

J. Appl. Phys.

65

,

1156

(

1989

).

26.

D. H.

Park

and

K. F.

Brennan

,

J. Appl. Phys.

65

,

1615

(

1989

).

27.

T. K.

Gaylord

and

K. F.

Brennan

,

J. Appl. Phys.

65

,

814

(

1989

).

28.

P.

Lugli

and

D. K.

Ferry

,

IEEE Trans. Electron Devices

32

,

2431

(

1985

).

29.

M.

Goano

,

E.

Bellotti

,

E.

Ghillino

,

G.

Ghione

, and

K. F.

Brennan

,

J. Appl. Phys.

88

,

6467

(

2000

).

30.

M.

Goano

,

E.

Bellotti

,

E.

Ghillino

,

G.

Ghione

, and

K. F.

Brennan

,

J. Appl. Phys.

88

,

6476

(

2000

).

31.

B. E.

Foutz

,

S. K.

O’Leary

,

M. S.

Shur

, and

L. F.

Eastman

,

J. Appl. Phys.

85

,

7727

(

1999

).

This content is only available via PDF.

© 2002 American Institute of Physics.

2002

American Institute of Physics

You do not currently have access to this content.

Sign in

Don't already have an account? Register

Sign In

You could not be signed in. Please check your credentials and make sure you have an active account and try again.

Reset password

Register

Sign in via your Institution

Sign in via your Institution

Pay-Per-View Access

$40.00

Buy This Article

282 Views

81 Crossref

View Metrics

×

Citing articles via

Google Scholar

CrossRef (81)

Sign up for alerts

Monte Carlo calculation of two-dimensional electron dynamics in GaN–AlGaN heterostructures (5)

  • Most Read
  • Most Cited

Recent developments of quantum sensing under pressurized environment using the nitrogen vacancy (NV) center in diamond

A step-by-step guide to perform x-ray photoelectron spectroscopy

GaN-based power devices: Physics, reliability, and perspectives

Monte Carlo calculation of two-dimensional electron dynamics in GaN–AlGaN heterostructures (2024)
Top Articles
Latest Posts
Article information

Author: Nicola Considine CPA

Last Updated:

Views: 5894

Rating: 4.9 / 5 (69 voted)

Reviews: 84% of readers found this page helpful

Author information

Name: Nicola Considine CPA

Birthday: 1993-02-26

Address: 3809 Clinton Inlet, East Aleisha, UT 46318-2392

Phone: +2681424145499

Job: Government Technician

Hobby: Calligraphy, Lego building, Worldbuilding, Shooting, Bird watching, Shopping, Cooking

Introduction: My name is Nicola Considine CPA, I am a determined, witty, powerful, brainy, open, smiling, proud person who loves writing and wants to share my knowledge and understanding with you.